Files
HBshuiwuConcentrator/APP/sx1276-FskMisc.c
2025-12-15 16:07:49 +08:00

516 lines
15 KiB
C

/*
* THE FOLLOWING FIRMWARE IS PROVIDED: (1) "AS IS" WITH NO WARRANTY; AND
* (2)TO ENABLE ACCESS TO CODING INFORMATION TO GUIDE AND FACILITATE CUSTOMER.
* CONSEQUENTLY, SEMTECH SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR
* CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE CONTENT
* OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE CODING INFORMATION
* CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*
* Copyright (C) SEMTECH S.A.
*/
/*!
* \file sx1276-FskMisc.c
* \brief SX1276 RF chip high level functions driver
*
* \remark Optional support functions.
* These functions are defined only to easy the change of the
* parameters.
* For a final firmware the radio parameters will be known so
* there is no need to support all possible parameters.
* Removing these functions will greatly reduce the final firmware
* size.
*
* \version 2.0.0
* \date May 6 2013
* \author Gregory Cristian
*
* Last modified by Miguel Luis on Jun 19 2013
*/
#include <math.h>
#include "hal_radio.h"
#include "sx1276-Fsk.h"
#include "sx1276-FskMisc.h"
extern tFskSettings FskSettings;
void SX1276FskSetRFFrequency( uint32_t freq )
{
FskSettings.RFFrequency = freq;
freq = ( uint32_t )( ( double )freq / ( double )FREQ_STEP );
SX1276->RegFrfMsb = ( uint8_t )( ( freq >> 16 ) & 0xFF );
SX1276->RegFrfMid = ( uint8_t )( ( freq >> 8 ) & 0xFF );
SX1276->RegFrfLsb = ( uint8_t )( freq & 0xFF );
SX1276WriteBuffer( REG_FRFMSB, &SX1276->RegFrfMsb, 3 );
}
uint32_t SX1276FskGetRFFrequency( void )
{
SX1276ReadBuffer( REG_FRFMSB, &SX1276->RegFrfMsb, 3 );
FskSettings.RFFrequency = ( ( uint32_t )SX1276->RegFrfMsb << 16 ) | ( ( uint32_t )SX1276->RegFrfMid << 8 ) | ( ( uint32_t )SX1276->RegFrfLsb );
FskSettings.RFFrequency = ( uint32_t )( ( double )FskSettings.RFFrequency * ( double )FREQ_STEP );
return FskSettings.RFFrequency;
}
void SX1276FskRxCalibrate( void )
{
// the function RadioRxCalibrate is called just after the reset so all register are at their default values
uint8_t regPaConfigInitVal;
uint32_t initialFreq;
// save register values;
SX1276Read( REG_PACONFIG, &regPaConfigInitVal );
initialFreq = SX1276FskGetRFFrequency( );
// Cut the PA just in case
SX1276->RegPaConfig = 0x00; // RFO output, power = -1 dBm
SX1276Write( REG_PACONFIG, SX1276->RegPaConfig );
// Set Frequency in HF band
SX1276FskSetRFFrequency( 860000000 );
// Rx chain re-calibration workaround
SX1276Read( REG_IMAGECAL, &SX1276->RegImageCal );
SX1276->RegImageCal = ( SX1276->RegImageCal & RF_IMAGECAL_IMAGECAL_MASK ) | RF_IMAGECAL_IMAGECAL_START;
SX1276Write( REG_IMAGECAL, SX1276->RegImageCal );
SX1276Read( REG_IMAGECAL, &SX1276->RegImageCal );
// rx_cal_run goes low when calibration in finished
while( ( SX1276->RegImageCal & RF_IMAGECAL_IMAGECAL_RUNNING ) == RF_IMAGECAL_IMAGECAL_RUNNING )
{
SX1276Read( REG_IMAGECAL, &SX1276->RegImageCal );
}
// reload saved values into the registers
SX1276->RegPaConfig = regPaConfigInitVal;
SX1276Write( REG_PACONFIG, SX1276->RegPaConfig );
SX1276FskSetRFFrequency( initialFreq );
}
void SX1276FskSetBitrate( uint32_t bitrate )
{
FskSettings.Bitrate = bitrate;
bitrate = ( uint16_t )( ( double )XTAL_FREQ / ( double )bitrate );
SX1276->RegBitrateMsb = ( uint8_t )( bitrate >> 8 );
SX1276->RegBitrateLsb = ( uint8_t )( bitrate & 0xFF );
SX1276WriteBuffer( REG_BITRATEMSB, &SX1276->RegBitrateMsb, 2 );
}
uint32_t SX1276FskGetBitrate( void )
{
SX1276ReadBuffer( REG_BITRATEMSB, &SX1276->RegBitrateMsb, 2 );
FskSettings.Bitrate = ( ( ( uint32_t )SX1276->RegBitrateMsb << 8 ) | ( ( uint32_t )SX1276->RegBitrateLsb ) );
FskSettings.Bitrate = ( uint16_t )( ( double )XTAL_FREQ / ( double )FskSettings.Bitrate );
return FskSettings.Bitrate;
}
void SX1276FskSetFdev( uint32_t fdev )
{
FskSettings.Fdev = fdev;
SX1276Read( REG_FDEVMSB, &SX1276->RegFdevMsb );
fdev = ( uint16_t )( ( double )fdev / ( double )FREQ_STEP );
SX1276->RegFdevMsb = ( ( SX1276->RegFdevMsb & RF_FDEVMSB_FDEV_MASK ) | ( ( ( uint8_t )( fdev >> 8 ) ) & ~RF_FDEVMSB_FDEV_MASK ) );
SX1276->RegFdevLsb = ( uint8_t )( fdev & 0xFF );
SX1276WriteBuffer( REG_FDEVMSB, &SX1276->RegFdevMsb, 2 );
}
uint32_t SX1276FskGetFdev( void )
{
SX1276ReadBuffer( REG_FDEVMSB, &SX1276->RegFdevMsb, 2 );
FskSettings.Fdev = ( ( ( uint32_t )( ( SX1276->RegFdevMsb << 8 ) & ~RF_FDEVMSB_FDEV_MASK ) ) | ( ( uint32_t )SX1276->RegFdevLsb ) );
FskSettings.Fdev = ( uint16_t )( ( double )FskSettings.Fdev * ( double )FREQ_STEP );
return FskSettings.Fdev;
}
void SX1276FskSetRFPower( int8_t power )
{
SX1276Read( REG_PACONFIG, &SX1276->RegPaConfig );
SX1276Read( REG_PADAC, &SX1276->RegPaDac );
if( ( SX1276->RegPaConfig & RF_PACONFIG_PASELECT_PABOOST ) == RF_PACONFIG_PASELECT_PABOOST )
{
if( ( SX1276->RegPaDac & 0x87 ) == 0x87 )
{
if( power < 5 )
{
power = 5;
}
if( power > 20 )
{
power = 20;
}
SX1276->RegPaConfig = ( SX1276->RegPaConfig & RF_PACONFIG_MAX_POWER_MASK ) | 0x70;
SX1276->RegPaConfig = ( SX1276->RegPaConfig & RF_PACONFIG_OUTPUTPOWER_MASK ) | ( uint8_t )( ( uint16_t )( power - 5 ) & 0x0F );
}
else
{
if( power < 2 )
{
power = 2;
}
if( power > 17 )
{
power = 17;
}
SX1276->RegPaConfig = ( SX1276->RegPaConfig & RF_PACONFIG_MAX_POWER_MASK ) | 0x70;
SX1276->RegPaConfig = ( SX1276->RegPaConfig & RF_PACONFIG_OUTPUTPOWER_MASK ) | ( uint8_t )( ( uint16_t )( power - 2 ) & 0x0F );
}
}
else
{
if( power < -1 )
{
power = -1;
}
if( power > 14 )
{
power = 14;
}
SX1276->RegPaConfig = ( SX1276->RegPaConfig & RF_PACONFIG_MAX_POWER_MASK ) | 0x70;
SX1276->RegPaConfig = ( SX1276->RegPaConfig & RF_PACONFIG_OUTPUTPOWER_MASK ) | ( uint8_t )( ( uint16_t )( power + 1 ) & 0x0F );
}
SX1276Write( REG_PACONFIG, SX1276->RegPaConfig );
FskSettings.Power = power;
}
int8_t SX1276FskGetRFPower( void )
{
SX1276Read( REG_PACONFIG, &SX1276->RegPaConfig );
SX1276Read( REG_PADAC, &SX1276->RegPaDac );
if( ( SX1276->RegPaConfig & RF_PACONFIG_PASELECT_PABOOST ) == RF_PACONFIG_PASELECT_PABOOST )
{
if( ( SX1276->RegPaDac & 0x07 ) == 0x07 )
{
FskSettings.Power = 5 + ( SX1276->RegPaConfig & ~RF_PACONFIG_OUTPUTPOWER_MASK );
}
else
{
FskSettings.Power = 2 + ( SX1276->RegPaConfig & ~RF_PACONFIG_OUTPUTPOWER_MASK );
}
}
else
{
FskSettings.Power = -1 + ( SX1276->RegPaConfig & ~RF_PACONFIG_OUTPUTPOWER_MASK );
}
return FskSettings.Power;
}
/*!
* \brief Computes the Rx bandwidth with the mantisse and exponent
*
* \param [IN] mantisse Mantisse of the bandwidth value
* \param [IN] exponent Exponent of the bandwidth value
* \retval bandwidth Computed bandwidth
*/
static uint32_t SX1276FskComputeRxBw( uint8_t mantisse, uint8_t exponent )
{
// rxBw
if( ( SX1276->RegOpMode & RF_OPMODE_MODULATIONTYPE_FSK ) == RF_OPMODE_MODULATIONTYPE_FSK )
{
return ( uint32_t )( ( double )XTAL_FREQ / ( mantisse * ( double )pow( 2, exponent + 2 ) ) );
}
else
{
return ( uint32_t )( ( double )XTAL_FREQ / ( mantisse * ( double )pow( 2, exponent + 3 ) ) );
}
}
/*!
* \brief Computes the mantisse and exponent from the bandwitdh value
*
* \param [IN] rxBwValue Bandwidth value
* \param [OUT] mantisse Mantisse of the bandwidth value
* \param [OUT] exponent Exponent of the bandwidth value
*/
static void SX1276FskComputeRxBwMantExp( uint32_t rxBwValue, uint8_t* mantisse, uint8_t* exponent )
{
uint8_t tmpExp = 0;
uint8_t tmpMant = 0;
double tmpRxBw = 0;
double rxBwMin = 10e6;
for( tmpExp = 0; tmpExp < 8; tmpExp++ )
{
for( tmpMant = 16; tmpMant <= 24; tmpMant += 4 )
{
if( ( SX1276->RegOpMode & RF_OPMODE_MODULATIONTYPE_FSK ) == RF_OPMODE_MODULATIONTYPE_FSK )
{
tmpRxBw = ( double )XTAL_FREQ / ( tmpMant * ( double )pow( 2, tmpExp + 2 ) );
}
else
{
tmpRxBw = ( double )XTAL_FREQ / ( tmpMant * ( double )pow( 2, tmpExp + 3 ) );
}
if( fabs( tmpRxBw - rxBwValue ) < rxBwMin )
{
rxBwMin = fabs( tmpRxBw - rxBwValue );
*mantisse = tmpMant;
*exponent = tmpExp;
}
}
}
}
void SX1276FskSetDccBw( uint8_t* reg, uint32_t dccValue, uint32_t rxBwValue )
{
uint8_t mantisse = 0;
uint8_t exponent = 0;
if( reg == &SX1276->RegRxBw )
{
*reg = ( uint8_t )dccValue & 0x60;
}
else
{
*reg = 0;
}
SX1276FskComputeRxBwMantExp( rxBwValue, &mantisse, &exponent );
switch( mantisse )
{
case 16:
*reg |= ( uint8_t )( 0x00 | ( exponent & 0x07 ) );
break;
case 20:
*reg |= ( uint8_t )( 0x08 | ( exponent & 0x07 ) );
break;
case 24:
*reg |= ( uint8_t )( 0x10 | ( exponent & 0x07 ) );
break;
default:
// Something went terribely wrong
break;
}
if( reg == &SX1276->RegRxBw )
{
SX1276Write( REG_RXBW, *reg );
FskSettings.RxBw = rxBwValue;
}
else
{
SX1276Write( REG_AFCBW, *reg );
FskSettings.RxBwAfc = rxBwValue;
}
}
uint32_t SX1276FskGetBw( uint8_t* reg )
{
uint32_t rxBwValue = 0;
uint8_t mantisse = 0;
switch( ( *reg & 0x18 ) >> 3 )
{
case 0:
mantisse = 16;
break;
case 1:
mantisse = 20;
break;
case 2:
mantisse = 24;
break;
default:
break;
}
rxBwValue = SX1276FskComputeRxBw( mantisse, ( uint8_t )*reg & 0x07 );
if( reg == &SX1276->RegRxBw )
{
return FskSettings.RxBw = rxBwValue;
}
else
{
return FskSettings.RxBwAfc = rxBwValue;
}
}
void SX1276FskSetPacketCrcOn( bool enable )
{
SX1276Read( REG_PACKETCONFIG1, &SX1276->RegPacketConfig1 );
SX1276->RegPacketConfig1 = ( SX1276->RegPacketConfig1 & RF_PACKETCONFIG1_CRC_MASK ) | ( enable << 4 );
SX1276Write( REG_PACKETCONFIG1, SX1276->RegPacketConfig1 );
FskSettings.CrcOn = enable;
}
bool SX1276FskGetPacketCrcOn( void )
{
SX1276Read( REG_PACKETCONFIG1, &SX1276->RegPacketConfig1 );
FskSettings.CrcOn = (bool)(( SX1276->RegPacketConfig1 & RF_PACKETCONFIG1_CRC_ON ) >> 4);
return FskSettings.CrcOn;
}
void SX1276FskSetAfcOn( bool enable )
{
SX1276Read( REG_RXCONFIG, &SX1276->RegRxConfig );
SX1276->RegRxConfig = ( SX1276->RegRxConfig & RF_RXCONFIG_AFCAUTO_MASK ) | ( enable << 4 );
SX1276Write( REG_RXCONFIG, SX1276->RegRxConfig );
FskSettings.AfcOn = enable;
}
bool SX1276FskGetAfcOn( void )
{
SX1276Read( REG_RXCONFIG, &SX1276->RegRxConfig );
FskSettings.AfcOn = (bool)(( SX1276->RegRxConfig & RF_RXCONFIG_AFCAUTO_ON ) >> 4);
return FskSettings.AfcOn;
}
void SX1276FskSetPayloadLength( uint8_t value )
{
SX1276->RegPayloadLength = value;
SX1276Write( REG_PAYLOADLENGTH, SX1276->RegPayloadLength );
FskSettings.PayloadLength = value;
}
uint8_t SX1276FskGetPayloadLength( void )
{
SX1276Read( REG_PAYLOADLENGTH, &SX1276->RegPayloadLength );
FskSettings.PayloadLength = SX1276->RegPayloadLength;
return FskSettings.PayloadLength;
}
void SX1276FskSetPa20dBm( bool enale )
{
SX1276Read( REG_PADAC, &SX1276->RegPaDac );
SX1276Read( REG_PACONFIG, &SX1276->RegPaConfig );
if( ( SX1276->RegPaConfig & RF_PACONFIG_PASELECT_PABOOST ) == RF_PACONFIG_PASELECT_PABOOST )
{
if( enale == true )
{
SX1276->RegPaDac = 0x87;
}
}
else
{
SX1276->RegPaDac = 0x84;
}
SX1276Write( REG_PADAC, SX1276->RegPaDac );
}
bool SX1276FskGetPa20dBm( void )
{
SX1276Read( REG_PADAC, &SX1276->RegPaDac );
return ( ( SX1276->RegPaDac & 0x07 ) == 0x07 ) ? true : false;
}
void SX1276FskSetPAOutput( uint8_t outputPin )
{
SX1276Read( REG_PACONFIG, &SX1276->RegPaConfig );
SX1276->RegPaConfig = (SX1276->RegPaConfig & RF_PACONFIG_PASELECT_MASK ) | outputPin;
SX1276Write( REG_PACONFIG, SX1276->RegPaConfig );
}
uint8_t SX1276FskGetPAOutput( void )
{
SX1276Read( REG_PACONFIG, &SX1276->RegPaConfig );
return SX1276->RegPaConfig & ~RF_PACONFIG_PASELECT_MASK;
}
void SX1276FskSetPaRamp( uint8_t value )
{
SX1276Read( REG_PARAMP, &SX1276->RegPaRamp );
SX1276->RegPaRamp = ( SX1276->RegPaRamp & RF_PARAMP_MASK ) | ( value & ~RF_PARAMP_MASK );
SX1276Write( REG_PARAMP, SX1276->RegPaRamp );
}
uint8_t SX1276FskGetPaRamp( void )
{
SX1276Read( REG_PARAMP, &SX1276->RegPaRamp );
return SX1276->RegPaRamp & ~RF_PARAMP_MASK;
}
void SX1276FskSetRssiOffset( int8_t offset )
{
SX1276Read( REG_RSSICONFIG, &SX1276->RegRssiConfig );
if( offset < 0 )
{
offset = ( ~offset & 0x1F );
offset += 1;
offset = -offset;
}
SX1276->RegRssiConfig |= ( uint8_t )( ( offset & 0x1F ) << 3 );
SX1276Write( REG_RSSICONFIG, SX1276->RegRssiConfig );
}
int8_t SX1276FskGetRssiOffset( void )
{
SX1276Read( REG_RSSICONFIG, &SX1276->RegRssiConfig );
int8_t offset = SX1276->RegRssiConfig >> 3;
if( ( offset & 0x10 ) == 0x10 )
{
offset = ( ~offset & 0x1F );
offset += 1;
offset = -offset;
}
return offset;
}
int8_t SX1276FskGetRawTemp( void )
{
int8_t temp = 0;
uint8_t previousOpMode;
//uint32_t startTick;
// Enable Temperature reading
SX1276Read( REG_IMAGECAL, &SX1276->RegImageCal );
SX1276->RegImageCal = ( SX1276->RegImageCal & RF_IMAGECAL_TEMPMONITOR_MASK ) | RF_IMAGECAL_TEMPMONITOR_ON;
SX1276Write( REG_IMAGECAL, SX1276->RegImageCal );
// save current Op Mode
SX1276Read( REG_OPMODE, &SX1276->RegOpMode );
previousOpMode = SX1276->RegOpMode;
// put device in FSK RxSynth
SX1276->RegOpMode = RF_OPMODE_SYNTHESIZER_RX;
SX1276Write( REG_OPMODE, SX1276->RegOpMode );
// Wait 1ms
//startTick = GET_TICK_COUNT( );
//while( ( GET_TICK_COUNT( ) - startTick ) < TICK_RATE_MS( 1 ) );
// Disable Temperature reading
SX1276Read( REG_IMAGECAL, &SX1276->RegImageCal );
SX1276->RegImageCal = ( SX1276->RegImageCal & RF_IMAGECAL_TEMPMONITOR_MASK ) | RF_IMAGECAL_TEMPMONITOR_OFF;
SX1276Write( REG_IMAGECAL, SX1276->RegImageCal );
// Read temperature
SX1276Read( REG_TEMP, &SX1276->RegTemp );
temp = SX1276->RegTemp & 0x7F;
if( ( SX1276->RegTemp & 0x80 ) == 0x80 )
{
temp *= -1;
}
// Reload previous Op Mode
SX1276Write( REG_OPMODE, previousOpMode );
return temp;
}
int8_t SX1276FskCalibreateTemp( int8_t actualTemp )
{
return actualTemp - SX1276FskGetRawTemp( );
}
int8_t SX1276FskGetTemp( int8_t compensationFactor )
{
return SX1276FskGetRawTemp( ) + compensationFactor;
}